
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6255 238

Overview of Scheduling on Multi-core

Processing

Hema K. Reddy
1
, Dr. G. R. Bamnote

2

M.E. Student, PRMIT Badnera, India
1

Professor, Department of CSE, PRMIT Badnera, India
2

Abstract: The Multi-core processors are requirement of recent needs. As the computers laptops and mobiles emerged

with the need of high end computing as well as battery drainage problem it is much more necessary to work on

scheduling. With the evolution of multiprocessors there is increase in battery consumption. Effective utilization of

multi-cores of processors will ultimately enhance battery life. ARM’s big. LITTLE architecture provides a way to

efficiently schedule the tasks on the multiprocessors. This paper explores study on dynamic real time scheduling using

Global task scheduling algorithms. This paper illustrates scheduling on current systems and various factors which

contribute to the performance up gradation of the system.

Keywords: Multi-core processors, big. LITTLE, Real Time Systems.

I. INTRODUCTION

The era of yesteryears was of single processor, where

there was a single core architecture for the computations.

As the need aroused the computers were able to work not

only for computations but for storage, fun entertainment,

audio ,video, and gaming purposes, which in turn lead to

demand for high processing speeds and eventually more

battery drainage in laptops .

To overcome the issues with Battery drainage the

manufacturers concluded that if the processor speed is

reduced the battery consumption is enhanced. So there was

need for slow but multiple processors, which in turn

evolved multicore processor architectures. Theses

multiprocessor architectures are mainly to boost up the

processing especially for the independent processes so that

the output can be combined to form the final solution and

get the execution at the distributed level.

Mainly multiprocessors are used in smartphones which

executes multiple tasks at a time. Due to these

multiprocessors energy is consumed on a large scale and

to reduce this energy consumption we need to propose

new techniques to reduce battery consumption without

compromising with the performance. Previously in most

of the mobile phones, a processor giving higher

performance or fast processing (Big processors) are not

power efficient and processors consuming less

power(Little processors)do not provide high performance.

Thus our goal cannot be achieved using same type of

processors When multiple tasks are running at different

cores it is important to know the dependent tasks and

independent tasks. Similarly the two tasks are to be

grouped in the different categories, and are to be

scheduled according the requirement of results.

In Independent processes the processes can be distributed

to different cores and are to be executed without much

care and botheration, but in case of dependent tasks those

are to synchronised so that the results can be obtained at

proper sequence as the tasks are interdependent, so their

results are. Similarly the processes are to be executed

concurrently by taking care of their concurrency, their

synchronisations and inter process communication

problems.

 The problems in scheduling are to considered are based

on various factors. As the tasks are running concurrently

the Mutual Exclusion Problem, Critical Section Problem,

and the deadlocks are to be dealt with. As the tasks under

consideration are non real time, if the tasks become real

time then deadline becomes an important criteria while

deciding the system

The real time system is classified in two types’ viz. Hard

Real Time system and soft real time system. In Hard Real

Time system, if the deadlines are not met then catastrophic

failures may occur, but in Soft real time systems failure to

some extent may be tolerated, but if average is attained

then the soft real time system can be called as successful.

When same processors are replicated in the multi cores the

cores are homogeneous, but if there is difference between

pair of cores then the combination can be called as

heterogeneous cores. Now as in case of mobiles the

requirement was for high end gaming softwares, for which

high end computing processors are required, much of the

time the main functionality viz, calling and texting are

useful, which can be executed on low end processors also.

To save the power energy which is nothing but battery

power is saved when high end computing processors are

not employed or idle. To have the best of both worlds, i.e.

High end computing Processor and Low end computing

processor, ARM has given big.LITTLE platform. To

overcome the problem, ARM has launched a technology

termed as ―big.LITTLE technology‖ which is a

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6255 239

heterogeneous computing architecture consisting of two

types of processors.

II. LITERATURE SURVEY

DESPITE the success of current symmetric chip

multiprocessors (CMP) to take advantage of thread-level

parallelism (TLP), the improvement in performance by

TLP will tend to decrease if single-thread performance

does not show improvement correspondingly [1]. This

viewpoint positive discriminate asymmetric (or hybrid)

multicore processors, which merge one or a few big cores

with multiple smaller cores. A big core is well suited to

execute sequential program sections where all cores—

except one—are idle. In current scene, even small rise in

sequential performance are amplified by a degree that

justifies the employ of techniques that would be deemed

inefficient in the absence of multiprocessors [1].

As the thermal and power factors per processor are

restricted, increased efficiency of energy and smart

handling of wire delays affect directly into higher single-

thread performance, especially for the big cores mentioned

above. Clustered (or partitioned) micro architectures are a

well-known architectural concept that handles the wire

delay problem, keeps the important circuit intricacy low,

and is particularly power-efficient [2]. Traditionally,

load/store queue entries are assigned to memory

instructions in program order during the dispatch stage

before they go into the out-of-order core. Only after the

address was considered and when the instruction enters the

memory pipeline, is its queue entry occupied. The entry

remains occupied until the instruction commits.[3]

III. FACTORS UNDER CONSIDERATION FOR

BIG.LITTLE

1. At the high performance end: high compute capability

but within the thermal bounds

2. At the low performance end: very low power

consumption

ARM big.LITTLE™ technology has been designed to

address these requirements. Big.LITTLE technology is a

heterogeneous processing architecture which uses two

types of processor. ‖LITTLE‖ processors are designed for

maximum power efficiency while ‖big‖ processors are

designed to provide maximum compute performance. Both

types of processor are coherent and share the same

instruction set architecture (ISA). Using big.LITTLE

technology, each task can be dynamically allocated to a

big or LITTLE core depending on the instantaneous

performance requirement of that task. Through this

combination, big.LITTLE technology gives the answer

that is capable of providing the high peak performance

demanded by the the current mobile devices, within the

thermal limitations of the system, with maximum energy

efficiency.[4]

Fig 1: Typical big.LITTLE system

Same architecture but different micro-architectures

The first big.LITTLE processing pair consists of the ARM

Cortex®-A15 and Cortex-A7 processors. Since both

processors support the same ARMv7-A ISA, the same

instructions or program can be run in a consistent manner

on both processors. Differences in the internal

microarchitecture of the processors allow them to provide

the different power and performance characteristics that

are fundamental to the big.LITTLE processing concept.

Future designs will also utilise the Cortex-A53 and

Cortex-A57 processors in a big.LITTLE implementation

[4].

In a multi-core system, the processing time of a memory

request is highly variable as it depends on the location of

the access and the state of DRAM chips and the DRAM

controller: There is inter-core dependency as the memory

accesses from one core could also be influenced by

requests from other cores; the DRAM controller

commonly employs scheduling algorithms to re-order

requests in order to maximize overall DRAM throughput

[5]. All these factors affect the temporal predictability of

memory intensive real-time applications due to the high

variance of their memory access time. This imposes a big

challenge for real-time systems because execution time

guarantees of tasks running on a core can be invalidated

by workload changes in other cores. Therefore, there is an

increasing need for memory bandwidth management

solutions that provide quality of service (QoS).[6].

MULTICORE platforms are becoming increasingly

popular in modern computing systems since they have a

high processing capacity at a comparatively low cost.

Shared resources on the multicore chip, such as main

memory, are increasingly becoming a point of contention.

For example, processing high resolution images on one

core, while tracking objects from real-time vision data on

another core, may cause a mutual slowdown due to

interference for access to the shared memory, which was

not a bottleneck when these tasks were run on a single-

core system.

 While the real-time scheduling problem has been studied

for several decades, it has traditionally focused on

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6255 240

scheduling CPU computation. One fundamental

assumption is that we can estimate Worst-Case Execution

Time (WCET) for each task when running alone in the

system. However, when considering memory-intensive

applications running concurrently on a multicore chip, the

measured worst-case execution times can vary

significantly, and may change depending on what is

running on the other cores on the system. In the worst

case, all the cores may simultaneously compete to access

the main memory, and the worst-case task execution time

can grow linearly with the number of cores in the system

[7]

IV. METHODOLOGY

In case of heterogeneous multi-core scheduling, very few

studies have focused on global scheduling mainly due to

insufficient architectural support for migration in

commercial heterogeneous multi-core chips.[8]

The Characteristics and Components of Real Time

Operating System

There are many aspects in which Real Time Operating

System has similarities with common operating System.

To make hardware system available it controls and

manages variety of hardware resources. It is responsible

for execution of applications and tasks in timely manner.

I. Various Components of RTOS

Following Components are there in most of Real Time

Operating Systems: Scheduler – Every Kernel is having

scheduler at the core. The responsibility for determining

when to execute which task, and it provides corresponding

algorithms is performed by scheduler.

Objects-Tasks, semaphores and message queues are the

most common RTOS Kernel Objects.

Services- For Real Time embedded system applications to

be created the developers gets services from the kernel. In

general few services are facilitated like:

Management of Timer

Handling of Interrupts

I/O of Devices

Management of Memory

Various applications are based on embedded systems. The

Tasks can be proactive or reactive dependent on the needs

like interface, scalability, connectivity etc. Deciding the

system for an embedded machine is based on the analysis

of the operating System itself and the needs of

application.[9]

Characteristics

1. Its real time characteristic- Finish the tasks within the

limited time and events are to be responded similarly.

1. High priority task to be executed first is the scheduling

objective.

2. The jobs executing on real-time operating system

should be definite

3. The data might be extremely sharing in real-time

operating System[9]

V. FACTORS THAT AFFECTS REAL-TIME

CHARACTERISTICS OF OPERATING SYSTEM

A. Scheduling of Tasks

The real-time operating system should accept scheduling

kernel that is pre-emptive, which is based on task priority.

The non pre-emptive scheduling mechanism based

Operating System, must not have strict real-time

characteristic.

Pre-emptive scheduling supports a good foundation for

real-time system. The scheduling systems efficiency can

be maximised by making the operating system run with

particular real-time scheduling algorithm.

There are few real-time based scheduling algorithms, for

example the Liu and Layland Rate-Monotonic (RM)

scheduling algorithm and the (EDF) earliest deadline

priority algorithm. The static type of scheduling algorithm

is RM scheduling algorithm, in this the priority of tasks

are considered by the length of the cycle of task, and the

shorter cycle of task has a higher priority. Another

algorithm which is dynamic priority scheduling algorithms

is EDF algorithm that define priority of tasks with respect

to their deadlines. Therefore an excellent task scheduling

algorithm can improve the performance of operating

system’s real-time characteristics. However, it also

consumes system resources to some extent. Therefore,

time complexity of any scheduling algorithm, in turn, has

an impact on the real-time characteristic.

B. The context switching time

Processor transferring control from one task which is

currently executing to another ready for executing one in

Multi Tasking System is Context Switching . There are a

lot of conditions that can lead to context switches, such as

external interrupt, or freeing of resource which high

priority tasks wait for in preemptive scheduling systems.

in an operating system the linkages of tasks are achieved

by the process control block (PCB) data structure. When

context switching occurred, the previous tasks information

was saved to the respective PCB or stack PCB given. The

new task gets original information from respective PCB.

The time switching consumed rely on the processor

architecture, as different processors require to preserve

and store different number of register .The efficiency of

context switch will be affected by Operating system data

structures

C. The time of kernel stopping interrupt

The kernel of operating system is required to stop all of

the interrupt sometimes. Interrupt are going to crack the

sequence of instructions, and may cause loss of data.

keeping out interrupt generally delay the response of

request and switching of context.. The operations which

are non critical can be inserted between the critical areas

in order to get better real-time performance of operating

system,. We can reduce the prohibition time of interrupt

by setting reasonable preemptive points in critical

areas[10].

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6255 241

VI. CONCLUSION

 The Performance of Real Time system greatly depend

upon the choice of correct Operating system for particular

application In the embedded system the improvement of

real-time performance of kernel has great significance.

The bond which is complex between the tasks may lead to

serious system consumption on internal communication

between tasks and corresponding delays.. The separating

and scheduling the tasks in the start will also give us

suppleness to apply different algorithms for different task

queues. Harmonization mechanism between tasks will

disallow the real-time performance of system. Therefore

which scheduling algorithm to employ a real-time

operating system to apply to an actual application system

is the answer for all embedded system developer.

REFERENCES

[1] M. D. Hill and M. R. Marty, ―Amdahl’s law in the multicore era,‖

IEEE Computer., vol. 41, no. 7, pp. 33–38, Jul. 2008.
[2] V. V. Zyuban and P. M. Kogge, ―Inherently lower-power high-

performance superscalar architectures,‖ in Proc. Int. Symp. High

Perform. Computer. Architecture 2001, pp. 268–285.
[3] Stefan Bieschewski, Joan-Manuel Parcerisa,and Antonio

Gonz_alez, Fellow, IEEE ―An Energy-Efficient Memory Unit for

Clustered Microarchitectures‖, IEEE Transactions On Computers,
Vol. 65, No. 8, August 2016,Pp.2631-2637.

[4] big.LITTLE Technology: The Future of Mobile,White Paper

ARM, 2013.
[5] K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith, ―Fair queuing

memory systems,‖ in Proc. Int. Symp. Microarchit., 2006, pp. 208–

222.
[6] Heechul Yun, Gang Yao,et.all.,‖ Memory Bandwidth Management

for Efficient Performance Isolation in Multi-Core Platforms‖, IEEE

Transactions On Computers, Vol. 65, No. 2, February 2016 pp.
562-576.

[7] Gang Yao, Rodolfo Pellizzoni,et.all., IEEE ―Global Real-Time

Memory-Centric Scheduling for Multicore Systems‖,IEEE
TRANSACTIONS ONCOMPUTERS, VOL. 65, NO. 9,

SEPTEMBER 2016 ,pp.2739-2751.

[8] Hoon Sung Chwa, et.all. ―Towards Energy and Feasibility Optimal
Scheduling on big.LITTLE Platform‖, Proceedings of the 6th Real-

Time Scheduling Open Problems Seminar(RTSOPS),July 7, 2015.

[9] P. S. Prasad, Akhilesh Upadhyay,‖ Scheduling Policy and its

Performance for the Embedded Real time System‖, International

Journal of Advanced Research in Computer and Communication

Engineering Vol. 2, Issue 4, April 2013
[10] P. S. Prasad, Akhilesh Upadhyay,‖ Advanced Sheduling Policy

and its Performance for the Embedded Real time System‖,

International Journal of Computer Architecture and Mobility (ISSN
2319-9229) Volume 1-Issue 6, April 2013.

[11] P. S. Prasad, Akhilesh Upadhyay,‖Interrupt Mechanism for Hybrid

Operating System‖, International Journal of Computer Architecture
and Mobility (ISSN 2319-9229) volume 1-Issue 9, July 2013

